Research Paper

Physiological and biochemical responses induced by Nickel to plants growing at nickel polluted soil

Atia Arzoo and Kunja Bihari Satapathy
Post-Graduate Department of Botany, Utkal University, Vani Vihar, Bhubaneswar-751004, Odisha, INDIA

(Received December 01, 2017, Accepted December 25, 2017)

Abstract

An experiment was conducted in three different plants like a cereal crop plant [Oryza sativa L.], an oil yielding plant [Arachis hypogea L.] and a pulse crop plant [Macrotyloma uniflorum (Lam.) Verdc.] to assess the effect of nickel on seed germination, growth and biochemical parameters. The seeds of all the test plants were germinated in six different concentrations of Nickel chloride solution ranging from 0.0 to 100 mg/l of nickel. It was observed that seedling vigour index, metal tolerance indices were decreased and the percentage of phytotoxicity was increased with increasing level of nickel. The pot culture experiment revealed that, the growth parameters and the percentage of moisture content in plant were reduced with increase in concentration of nickel and in contradiction, seedlings exhibited better result in terms of growth in 40 ppm of nickel at 30th day (developmental stage) and 100th day (matured stage) of treatment thereby indicating that Nickel at or below 40 mg/kg had stimulating effect on the seedling growth. Similarly the total chlorophyll content, total soluble protein content were decreased although free proline content was increased with increase in concentration of nickel at 30th day (developmental stage) and 100th day (matured stage) of treatment. Hence, it could be concluded that Nickel at lower concentration had an inducing effect on plant growth and inhibited the same at higher concentrations.

Keywords: Nickel, Plant, Germination, Growth parameter, Biochemical parameter

Introduction

Nickel (Ni) is a micronutrient required at extremely low concentration by plants\(^1\). It is considered as one of the toxic heavy metals, and is known for its harmful effects on the environment where it bio-accumulates and poses a severe threat to human and environmental health. All kinds of nickel compounds, except for the metallic nickel, have been classified as human carcinogens by International Agency for Research on Cancer\(^2\). The present study examines the extent of impact of Ni on both developmental stage and matured stage in growing plants [Oryza sativa L., Arachis hypogea L. and Macrotyloma uniflorum (Lam.) Verdc]. The phytotoxic effects of varying concentrations of nickel on the growth, development and biochemical changes in plants supplemented to increasing levels of nickel was assessed.

Material and Methods

Collection of seeds
Seeds of all the plants were obtained from the seed testing laboratory, Orissa University of Agriculture and Technology (O.U.A.T), Bhubaneswar, Odisha, India.
Physiological and biochemical analysis
The present study was undertaken with Nickel (Nickel Chloride) at 20, 40, 60, 80 and 100 mg/l levels along with control (untreated). Seeds of all the test plants were surface sterilized with 0.1% mercuric chloride and washed carefully with tap water and then with distilled water. Hundred identical sized seeds of each plant were placed in petri-dishes of 10 cm diameter with different level of nickel chloride solution (20, 40, 60, 80 and 100 mg Ni/l) and one with control at a constant temperature of 26 °C. The seeds were submerged in 10 ml of test solutions and distilled water two times in a day. Each treatment was replicated five times. The number of seeds germinated in each treatment was counted on 5th day of sowing and the total percentage of germination was calculated. Metal tolerance index, seedling vigour index and percentage of phytotoxicity were calculated. In pot culture experiment seeds of test plants were sown in pre-treated soil (soil treated with 20, 40, 60, 80 and 100 mg Ni/kg of soil with a nickel less soil) and different growth and biochemical parameters like chlorophyll content, protein content and free proline content were estimated in plants at 30th day and 100th day of treatment. All the experiments were repeated five times and the data was statistically analyzed and standard error of mean (SEM) was calculated.

Results and Discussion
Effect of Nickel treatments on plant growth inhibition has been reported by several authors. Uptake of Ni by plants shows retarded growth, damage to cell wall, cell membrane as well as change the metabolism of plants. Keeping on the view that Ni had toxic effect on plants, the present study has been conducted with an effort to assess the phytoxic impacts with special reference to biochemical parameters in both developing stage (30 days after treatment) and in matured stage (100 days after treatment) of all test plants.

Impacts of nickel on seed germination of three different plants
In this experiment, it was found that the germination percentage (Figure 1) and radical length (Figure 2) at 5th day of treatment were decreased with rising concentration of nickel by which seedling vigour index (Figure 3), metal tolerance indices (Figure 4) were reduced and the percentage of phytotoxicity (Figure 5) were increased with increasing concentration of nickel. Since, germination is the most crucial phase of plant development, the seed germination can be frequently used as an indicator of early response of the plants in the unfavourable environment. Ni inhibits all energy requiring cellular processes during germination thus, slow down emergence of radicle and plumules.

![Figure 1: Impacts of Nickel on seed germination of three different plants on 5th day of treatment](image-url)
Figure 2: Impacts of Nickel on radicle length of three different plants on 5th day of treatment

Figure 3: Impacts of Nickel on seedling vigour indices of three different plants on 5th day of treatment

Figure 4: Impacts of Nickel on metal tolerance indices of three different plants on 5th day of treatment
Impacts of nickel on seedling growth of three different plants

The pot culture experiment indicated that, the growth parameters and the moisture content in plant were decreased with increase in concentration of nickel and in contradiction, seedlings showed better result in terms of growth in 40 ppm of nickel at 30th day (developmental stage) and 100th day (matured stage), thereby indicating that Nickel at or below 40 mg/kg had stimulating effect on the seedling growth (Table.1, 2 and 3). Similar results were reported on the effect of cadmium in Triticum aestivum11, chromium in Salvia sclarea and cobalt and zinc in Pennisetum americanum L. and Parkinsonia aculeata L.12.

Table 1: Effect of Nickel on root length, shoot length and percentage of moisture content of Arachis hypogea L. plants at 30th day of treatment

<table>
<thead>
<tr>
<th>Ni Concentration</th>
<th>Root length (in cm)</th>
<th>Shoot length (in cm)</th>
<th>Shoot fresh weight (in g)</th>
<th>Shoot dry weight (in g)</th>
<th>Moisture content (%)</th>
<th>Root fresh weight (in g)</th>
<th>Root dry weight (in g)</th>
<th>Moisture content (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control (00 ppm)</td>
<td>22.46 ± 0.98</td>
<td>17.26 ± 1.04</td>
<td>6.872 ± 0.089</td>
<td>1.239 ± 0.008</td>
<td>81.970 ± 0.089</td>
<td>2.351 ± 0.006</td>
<td>0.470 ± 0.006</td>
<td>80.00 ± 0.008</td>
</tr>
<tr>
<td>20 ppm</td>
<td>25.46 ± 0.85</td>
<td>18.16 ± 0.85</td>
<td>8.119 ± 0.088</td>
<td>1.450 ± 0.008</td>
<td>82.140 ± 0.088</td>
<td>3.266 ± 0.006</td>
<td>0.625 ± 0.007</td>
<td>80.863 ± 0.007</td>
</tr>
<tr>
<td>40 ppm</td>
<td>25.92 ± 0.85</td>
<td>18.68 ± 0.85</td>
<td>7.385 ± 0.088</td>
<td>1.266 ± 0.007</td>
<td>82.857 ± 0.088</td>
<td>2.529 ± 0.006</td>
<td>0.486 ± 0.007</td>
<td>80.782 ± 0.007</td>
</tr>
<tr>
<td>60 ppm</td>
<td>20.34 ± 0.76</td>
<td>15.08 ± 0.65</td>
<td>4.334 ± 0.076</td>
<td>0.934 ± 0.007</td>
<td>82.857 ± 0.088</td>
<td>1.573 ± 0.006</td>
<td>0.385 ± 0.007</td>
<td>75.524 ± 0.005</td>
</tr>
<tr>
<td>80 ppm</td>
<td>0.76 ± 0.59</td>
<td>0.59 ± 0.053</td>
<td>0.053 ± 0.009</td>
<td>0.009 ± 0.007</td>
<td>78.449 ± 0.007</td>
<td>0.007 ± 0.004</td>
<td>0.005 ± 0.004</td>
<td>75.238 ± 0.006</td>
</tr>
<tr>
<td>100 ppm</td>
<td>0.83 ± 0.43</td>
<td>0.43 ± 0.009</td>
<td>0.009 ± 0.006</td>
<td>0.006 ± 0.007</td>
<td>77.391 ± 0.006</td>
<td>0.006 ± 0.006</td>
<td>0.006 ± 0.004</td>
<td>74.440 ± 0.006</td>
</tr>
</tbody>
</table>

Values of 5 replicate ±SEM
Table 2: Effect of Nickel on root length, shoot length and percentage of moisture content of *Macrotyloma uniflorum* (Lam.) Verdc. at 30th day of treatment

<table>
<thead>
<tr>
<th>Ni concentration</th>
<th>Root length (in cm)</th>
<th>Shoot length (in cm)</th>
<th>Shoot fresh weight (in g)</th>
<th>Shoot dry weight (in g)</th>
<th>Moisture content (%)</th>
<th>Root fresh weight (in g)</th>
<th>Root dry weight (in g)</th>
<th>Moisture content (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control (0 ppm)</td>
<td>19.8 ± 0.985</td>
<td>20.1 ± 1.045</td>
<td>2.091 ± 0.089</td>
<td>0.495 ± 0.008</td>
<td>76.312 ± ±</td>
<td>1.047 ± ±</td>
<td>0.267 ± ±</td>
<td>74.475 ± ±</td>
</tr>
<tr>
<td>20 ppm</td>
<td>20.4 ± 2.145</td>
<td>0.089 ± 0.008</td>
<td>0.471 ± ±</td>
<td>1.198 ± ±</td>
<td>0.006 ± ±</td>
<td>0.008 ± ±</td>
<td>0.287 ± ±</td>
<td>75.976 ± ±</td>
</tr>
<tr>
<td>40 ppm</td>
<td>18.3 ± 1.609</td>
<td>1.609 ± 0.384</td>
<td>0.481 ± ±</td>
<td>1.198 ± ±</td>
<td>0.004 ± ±</td>
<td>0.212 ± ±</td>
<td>73.875 ± ±</td>
<td></td>
</tr>
<tr>
<td>60 ppm</td>
<td>16.5 ± 1.268</td>
<td>0.076 ± 0.007</td>
<td>0.481 ± ±</td>
<td>0.675 ± ±</td>
<td>0.007 ± ±</td>
<td>0.192 ± ±</td>
<td>71.549 ± ±</td>
<td></td>
</tr>
<tr>
<td>80 ppm</td>
<td>15.6 ± 1.086</td>
<td>1.031 ± ±</td>
<td>0.479 ± ±</td>
<td>0.469 ± ±</td>
<td>0.006 ± ±</td>
<td>0.124 ± ±</td>
<td>69.932 ± ±</td>
<td></td>
</tr>
<tr>
<td>100 ppm</td>
<td>14.2 ± 1.362</td>
<td>0.009 ± ±</td>
<td>0.479 ± ±</td>
<td>0.389 ± ±</td>
<td>0.006 ± ±</td>
<td>0.141 ± ±</td>
<td>67.876 ± ±</td>
<td></td>
</tr>
</tbody>
</table>

Values of 5 replicate ±SEM

Table 3: Effect of Nickel on root length, shoot length and percentage of moisture content of *Oryza sativa* L. at 30th day of treatment

<table>
<thead>
<tr>
<th>Ni concentration</th>
<th>Root length (in cm)</th>
<th>Shoot length (in cm)</th>
<th>Shoot fresh weight (in g)</th>
<th>Shoot dry weight (in g)</th>
<th>Moisture content (%)</th>
<th>Root fresh weight (in g)</th>
<th>Root dry weight (in g)</th>
<th>Moisture content (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control (0 ppm)</td>
<td>13.8 ± 0.874</td>
<td>12.4 ± 0.564</td>
<td>1.715 ± ±</td>
<td>0.368 ± ±</td>
<td>78.534 ± ±</td>
<td>0.712 ± ±</td>
<td>0.160 ± ±</td>
<td>77.465 ± ±</td>
</tr>
<tr>
<td>20 ppm</td>
<td>0.549 ± ±</td>
<td>0.032 ± ±</td>
<td>0.006 ± ±</td>
<td>0.769 ± ±</td>
<td>0.007 ± ±</td>
<td>0.006 ± ±</td>
<td>0.154 ± ±</td>
<td>79.985 ± ±</td>
</tr>
<tr>
<td>40 ppm</td>
<td>13.3 ± ±</td>
<td>1.914 ± ±</td>
<td>0.370 ± ±</td>
<td>0.604 ± ±</td>
<td>0.006 ± ±</td>
<td>0.154 ± ±</td>
<td>74.543 ± ±</td>
<td></td>
</tr>
<tr>
<td>60 ppm</td>
<td>0.576 ± ±</td>
<td>0.043 ± ±</td>
<td>0.009 ± ±</td>
<td>0.043 ± ±</td>
<td>0.006 ± ±</td>
<td>0.043 ± ±</td>
<td>73.876 ± ±</td>
<td></td>
</tr>
<tr>
<td>80 ppm</td>
<td>11.8 ± ±</td>
<td>1.032 ± ±</td>
<td>0.268 ± ±</td>
<td>0.502 ± ±</td>
<td>0.131 ± ±</td>
<td>0.131 ± ±</td>
<td>70.037 ± ±</td>
<td></td>
</tr>
<tr>
<td>100 ppm</td>
<td>0.675 ± ±</td>
<td>0.012 ± ±</td>
<td>0.013 ± ±</td>
<td>0.021 ± ±</td>
<td>0.004 ± ±</td>
<td>0.021 ± ±</td>
<td>68.297 ± ±</td>
<td></td>
</tr>
</tbody>
</table>

Values of 5 replicate ±SEM

Impacts of nickel on physiological and biochemical parameters of three different plants

Chlorophyll content and soluble protein content were decreased while free proline content was increased with increase in concentration of nickel at 30th day (developmental stage; Figure 6, 7 and 8) and 100th day (matured stage; Figure 9, 10 and 11) of treatment. It may be suggested that observed decrease in chlorophyll content at higher concentration of nickel might be due to breakdown...
of thylakoid and chloroplast envelope as was earlier reported13. Total soluble protein concentrations were found to decline in the leaves of the plant with the increase in nickel concentration. It might be due to the degradation of proteins in plants which could result in inhibition of nitrate reductase activity14 and it could be correlated with decreased photosynthetic activity, nitrogen metabolism and nucleic acid damage. Proline seems to be the only amino-acid that accumulates to a great extent in the leaves of many plants under stress. Higher proline content was recorded in leaves of seedlings treated with increasing concentrations of nickel. Hence, proline accumulation under such condition might also be operative as usual in osmotic adjustment whereas accumulation of proline in tissue can be taken as dependant marker for genotypes tolerant to stress.

Figure 6: Impacts of Nickel on total chlorophyll content of three different plants after 30th day of treatment

Figure 7: Impacts of Nickel on soluble protein content of leaves of three different plants after 30th day of treatment
Figure 8: Impacts of Nickel on free proline content of leaves of three different plants after 30th day of treatment

Figure 9: Impacts of Nickel on total chlorophyll content of leaves of three different plants after 100th day of treatment

Figure 10: Impacts of Nickel on soluble protein content of leaves of three different plants after 100th day of treatment

Figure 11: Impacts of Nickel on free protein content of leaves of three different plants after 100th day of treatment

Conclusion

The values of growth and biochemical parameters indicated that nickel had a significant stimulating, beneficiary and nutritional effect up to 40 mg/kg concentration for all test plants and all the parameters beyond this concentration slight excess of nickel levels had an adverse effect. From the findings of this
investigation, it can be concluded that nickel at lower concentration had a stimulating effect on plant growth and will inhibit the same at higher concentrations.

Acknowledgment
We are grateful to University Grants Commission, New Delhi for providing financial support and Head, Post Graduate Department of Botany, Utkal University for providing necessary Laboratory facilities during the investigation.

References